Isoform specificity of N-deacetyl ketoconazole by human and rabbit flavin-containing monooxygenases.
نویسندگان
چکیده
N-Deacetyl ketoconazole (DAK) is the major metabolite of orally administered ketoconazole. This major metabolite has been demonstrated to be further metabolized predominately by the flavin-containing monooxygenases (FMOs) to the secondary hydroxylamine, N-deacetyl-N-hydroxyketoconazole (N-hydroxy-DAK) by adult and postnatal rat hepatic microsomes. Our current investigation evaluated the FMO isoform specificity of DAK in a pyrophosphate buffer (pH 8.8) containing the glucose 6-phosphate NADPH-generating system. cDNA-expressed human FMOs (FMO1, FMO3, and FMO5) and cDNA-expressed rabbit FMOs (FMO1, FMO2, FMO3, and FMO5) were used to assess the metabolism of DAK to its subsequent FMO-mediated metabolites by HPLC analysis. Human and rabbit cDNA-expressed FMO3 resulted in extensive metabolism of DAK in 1 h (71.2 and 64.5%, respectively) to N-hydroxy-DAK (48.2 and 47.7%, respectively) and two other metabolites, metabolite 1 (11.7 and 7.8%, respectively) and metabolite 3 (10.5 and 10.0%, respectively). Previous studies suggest that metabolite 1 is the nitrone formed after successive FMO-mediated metabolism of N-hydroxy-DAK. Moreover, these studies display similar metabolic profiles seen with adult and postnatal rat hepatic microsomes. The human and rabbit FMO1 metabolized DAK predominately to the N-hydroxy-DAK in 1 h (36.2 and 25.3%, respectively) with minimal metabolism to the other metabolites (</=5%). Rabbit FMO2 metabolized DAK to N-hydroxy-DAK (15.9%) and metabolite 1 (6.6%). Last, DAK did not appear to be a substrate for human or rabbit FMO5. Heat inactivation of cDNA-expressed FMOs abolished DAK metabolite formation. These results suggest that DAK is a substrate for human and rabbit FMO1 and FMO3, rabbit FMO2, but not human or rabbit FMO5.
منابع مشابه
Flavin-containing monooxygenase-mediated metabolism of N-deacetyl ketoconazole by rat hepatic microsomes.
Although ketoconazole is extensively metabolized by hepatic microsomal enzymes, the route of formation and toxicity of suspected metabolites are largely unknown. Reports indicate that N-deacetyl ketoconazole (DAK) is a major initial metabolite in mice. DAK may be susceptible to successive oxidative attacks on the N-1 position by flavin-containing monooxygenases (FMO) producing potentially toxic...
متن کاملShort Communication Metabolism of Ketoconazole and Deacetylated Ketoconazole by Rat Hepatic Microsomes and Flavin-Containing Monooxygenases
Ketoconazole (KT) has been reported to cause hepatotoxicity, which is probably not mediated through an immunoallergic mechanism. Although KT is extensively metabolized by hepatic microsomal enzymes, the nature, route of formation, and toxicity of suspected metabolites are largely unknown. Recent reports indicate that N-deacetyl ketoconazole (DAK) is a major initial metabolite in mice, which, li...
متن کاملMetabolism of ketoconazole and deacetylated ketoconazole by rat hepatic microsomes and flavin-containing monooxygenases.
Ketoconazole (KT) has been reported to cause hepatotoxicity, which is probably not mediated through an immunoallergic mechanism. Although KT is extensively metabolized by hepatic microsomal enzymes, the nature, route of formation, and toxicity of suspected metabolites are largely unknown. Recent reports indicate that N-deacetyl ketoconazole (DAK) is a major initial metabolite in mice, which, li...
متن کاملN-deacetyl ketoconazole-induced hepatotoxicity in a primary culture system of rat hepatocytes.
Ketoconazole (KT) is an azole antifungal agent that has been associated with hepatotoxicity. The mechanism of its hepatotoxicity has not yet been resolved. It has been suggested that a reactive metabolite may be the cause of toxicity because the hepatic injury does not appear to be mediated through an immunoallergic mechanism. Several metabolites of KT have been reported in the literature of wh...
متن کاملRegulation of Flavin-Containing Monooxygenase
The flavin-containing monooxygenases (FMOs) are important for the oxidation of a variety of environmental toxicants, natural products, and therapeutics. Consisting of six family members (FMO1–5), these enzymes exhibit distinct but broad and overlapping substrate specificity and are expressed in a highly tissueand species-selective manner. Corresponding to previously identified regulatory domain...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Drug metabolism and disposition: the biological fate of chemicals
دوره 28 9 شماره
صفحات -
تاریخ انتشار 2000